

Microscopic and mesoscopic simulations of amorphous systems using LAMMPS and GPU-based algorithms

E. Ferrero and F. Puosi

Laboratoire Interdisciplinaire de Physique (LIPhy), UJF and CNRS

14/05/2014 Journée des utilisateurs CIMENT

Amorphous materials

Length scale $\leq 1 \text{ nm}$

Length scale $\geq 0.1 \ \mu m$

Particles are arranged in a disordered way, like in **liquids**, but they are "jammed" like in **solids**

Flow of amorphous media is an outstanding question in **rheology** and **plasticity**

Length scales in the deformation of amorphous systems

- **Microscopic scale**: scale of individual objects (droplets, colloids, particles). Dynamics is extremely complex and numerically highly time consuming at this scale.
- **Mesoscopic scale**: scale where the elementary local "plastic" events that constitute the flow of amorphous materials do occur.
- **Macroscopic scale**: scale relevant to engineering problems. Phenomenological laws describe the flow behavior.

Length scales in the deformation of amorphous systems

- **Microscopic scale**: scale of individual objects (droplets, colloids, particles). Dynamics is extremely complex and numerically highly time consuming at this scale.
- **Mesoscopic scale**: scale where the elementary local "plastic" events that constitute the flow of an orphous materials do occur.

Macro
 Add part by E. Ferrero
 describe the flow behavior.

ineering problems. Phenomenological laws

Molecular Dynamics (MD) basics

- N particles (atoms, groups of atoms, meso-particles) in a box (rigid walls, periodic boundary conditions)
- All physics in energy potential (forces)
 - pair-wise interactions (LJ, Coulombic), many-body forces (EAM, Tersoff, REBO), molecular forces (springs, torsions)...
- Integrate Newton's equation of motion
 - Velocity-Verlet formulation:
 - update V by1/2 step (using F)
 - update X (using V)
 - build neighbor lists (occasionally)
 - compute F (using X)
 - apply constraints & boundary conditions
 - update V by1/2 step (using new F)
 - output and diagnostics
 - CPU time break-down:
 - inter-particle forces = 80%
 - neighbor lists = 15%
 - everything else = 5%
- Properties via time-averaging ensemble configurations

What is LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov

- Classical MD code
- Open source (GPL), highly portable C++
- Simulations at varying length and time scales:
 electrons ⇒ atomistic ⇒ corse-grained ⇒ continuum
- Spatial-decomposition of simulation domain for parallelism
- GPU and OpenMP enhanced
- Can be coupled to other scales: QM, kMC, FE...

LAMMPS on Froggy

Benchmark: atomic fluid

- 32000 atoms for 1000 time-steps
- reduced density 0.8442 (liquid)
- force cutoff 2.5 sigma (~2.5 diameters)
- neighbor skin 0.3 sigma (neighbor atom 55)
- NVE time integration

GPU acceleration in LAMMPS

USER-CUDA package

- GPU version of pair styles, fixes and computes
- an entire LAMMPS calculation run entirely on the GPU for many time steps
- only one core per GPU
- better speed-up if the number of atom per GPU is large

GLASSDEF project

European Research Council

Microscopic aspects:

- Parallel Replica Dynamics in glasses: a method to extend timescales accessible to Molecular Dynamics simulation (FP, D. Rodney and J.-L. Barrat)
- **Plasticity in 2D sheared amorphous solids**: investigation of the spatio temporal correlations of plastic activity in athermal amorphous solids (FP, A. Nicolas, J. Rottler and J.-L. Barrat)
- Microscopic test of a mean field model for the flow of amorphous systems (FP, J. Olivier, K. Martens and J.-L. Barrat)
- Avalanches in amorphous systems: scaling description of avalanches in the shear flow of athermal amorphous solids at finite shear rates (FP, E. Ferrero, C. Liu, L. Marradi, K. Martens, A. Nicolas and J.-L. Barrat)

Elementary plastic events

At low temperature, the onset of plastic deformation in glasses is due to the accumulation of **elementary plastic events**, consisting of localized in space and time atomic rearrangements involving only a few tens of atoms, the so-called Shear Transformations (STs)

Tanguy et al., EPJE (2006)

Open question: How do the elastic response to a ST build in time?

Fictitious STs in amorphous solids

2D binary mixture of athermal Lennard-Jones particles.

 We apply an instantaneous local shear transformation and we observe the response of the system

Disorder average of the response: average over different spatial realizations of the ST.

Comparison with Continuum Elasticity Theory

Equilibrium response: Eshelby inclusion problem

Transient regime:

solution of a **diffusion equation** for the displacement field in an homogeneous medium in the presence of a perturbation due to a set of two force dipoles in the origin.

F. Puosi, J. Rottler and J.-L. Barrat, PRE (2014)

... a "mesoscopic" approximation

A 2D scalar field for the "local" stress

$$\frac{d}{dt}\sigma(r,t) = \mu \dot{\gamma} - 2\mu \int dr' G(r,r') \frac{d}{dt} \epsilon^{pl}(r';t)$$

propagator $G^{\infty}(r,\theta) = 2cos(4\theta)/\pi r^2$ "local" in fourier space plastic strain change: $\frac{d}{dt}\epsilon^{pl}(r,t) = \frac{1}{2\mu\tau}n(r,t)\sigma(r,t)$

Case of thermally activated events $\dot{\gamma}=0$ Plastic activation $(n: 0 \rightarrow 1)$ $p_{\rm on} = \tau_{\rm on}^{-1} \min[e^{-(\sigma^2 - \sigma_{\rm Y}^2)/2T}, 1]$

Elastic recovery $(n:1 \to 0)$ $p_{off} = \tau_{off}^{-1}$

+ (eventually) independent tracers moving according to the resulting deformation fields.

Workflow (physical protocol)

InitializeEverything(); CUDA Kernels, cudaMemSet for (i=0; i<t max; i++){ UpdateStateVariablesActivated(); **CUDA Kernel** ComputePlasticStrainChange(); CUDA Kernel or Thrust call TransformToFourierSpace(); **cuFFT** Convolution(); **CUDA Kernel** #ifdef TRACERS CalculateDisplacementField(); CUDA Kernel or Thrust call #endif AntitransformFromFourierSpace(); **cuFFT** EulerIntegrationStep(); **CUDA Kernel** #ifdef TRACERS UpdateTracersPositions(); **CUDA Kernel** #endif *if* (*condition*(*i*)){ Thrust calls + C host code DoSomeMeasurementsAndAccumulate(); <

PrintResults();

C host code

CUDA basic kernel example

pre-computed in Fourier space

人

Euler integration step

$$\sigma_i(t+\delta t) = \sigma_i(t) + (\mu \dot{\gamma} - 2\mu \sum_j G_{ij} n_j \Delta \epsilon_j) \delta t$$

Kernel Call

<pre>void EulerIntegrationStep(float shear_rate){ dim3 dimBlock(TILE_X, TILE_Y); dim3 dimGrid(LX/TILE_X, LY/TILE_Y); accost(dimBlock xtdimBlock xc=THDEADS DED BLOCK);</pre>
————————————————————————————————————
<pre> assert(dimGrid.x<=BLOCKS_PER_GRID && dimGrid.y<=BLOCKS_PER_GRID);</pre>
\longrightarrow $//$ ^{TODO} : Replace this by a Thrust transformation.
\longrightarrow }

cuFFT library call

Plan declaration

- > cufftHandle plan_c2r;
- ightarrow cufftHandle plan_r2c;
- - ______ cufftPlan2d(&plan_c2r, LX, LY, CUFFT_C2R);
 - _____ cufftPlan2d(&plan_r2c, LX, LY, CUFFT_R2C);
 - ightarrow #endif

Plan usage

	ansformToFourierSpace(){
	#ifdef.DOUBLE_PRECISION
	CUFFT_SAFE_CALL(cufftExecD2Z(plan_r2c, d_epsilon_dot_r, d_epsilon_dot));
	#else CHEFT SAFE CALL(cufftExacD2C(alap c2c d opsilop dat c d opsilop dat));
	#endif
} }	

CUDA kernel RNG use

Philox: A counter-based RNG from the "Random 123 library" (2011)

Fast, easy to parallelize, use minimal memory/cache resources (ideal for GPU), require very little code. Have passed all of the rigorous SmallCrush, Crush and BigCrush tests in the extensive TestU01 suite.

```
device
void PhiloxRandomPair(const unsigned int index, const unsigned int time, float *r1, float *r2)
      → RNG2+rng:
       > RNG2::ctr_type c_pair={{}};
        RNG2::key_type k_pair={{}};
        RNG2::ctr_type r_pair;
                → //·key
                \rightarrow k_pair[0]=.philox_seed;.//.eventually.do:.PHILOX_SEED.+.sample;
                → //.counters
               \rightarrow c_pair[0]= time;
               \rightarrow c_pair[1]= index;
               \rightarrow //.pair.of.uniform.random.numbers.generation
               \rightarrow r_pair = rng(c_pair, k_pair);
               \rightarrow // \cdot normalize \cdot to \cdot (0,1]
              \rightarrow *r1= u01 open_closed_32_53(r_pair[0]);
               \rightarrow *r2= u01_open_closed_32_53(r_pair[1]);
                          _global__ void Kernel_UpdateStateVariablesActivated(<mark>const</mark> REAL* d_sigma, bool* d_strain_sign, bool* d_state,\
                                                                             int idx = blockIdx.x*blockDim.x+threadIdx.x;
                               > int idy = blockIdx.y*blockDim.y+threadIdx.y;
                               \rightarrow if ( idx < LX/2 && idy < LY){
                                       \rightarrow int index = idx*LY + idy;
                                       bool actualstate:
                                        REAL actualsigma, lelast;
                                       \rightarrow float r1. r2:
                                         PhiloxRandomPair(index, time, &r1, &r2);
                                       → for (int j=0;j<2;j++)</p>
                                                  REAL rannum = r1*(j==0)+r2*(j==1);
```

Thrust Library basic usage

- High-Level Parallel Algorithms Library
- Parallel Analog of the C++ Standard Template Library (STL)
- Portability and Interoperability (CUDA, TBB, OpenMP,...)

REAL ComputeAverageStress(){

- → thrust::device_ptr<REAL> sigma_ptr (d_sigma);
 - → return thrust::reduce(sigma_ptr,sigma_ptr+NN, (REAL) 0, thrust::plus<REAL>())/(REAL)NN;

(REAL is either float or double)

Thrust Library "advanced" usage

$$S(q,t) = \frac{1}{N_{trac}} \left\langle \sum_{n=1}^{N_{trac}} \exp[i\vec{q} \cdot (\vec{r_i}(t+t_0) - \vec{r_i}(t_0))] \right\rangle_{t_0} \qquad \qquad q_x = \frac{2\pi}{L_x} i \quad q_y = \frac{2\pi}{L_y} j$$

void CalculateAccumulateTrajectoriesStructureFactor(const unsigned int index t, const unsigned int index tw. \ $\longrightarrow \longrightarrow \longrightarrow \longrightarrow$ const unsigned int twtd){ —> dim3 dimBlock(QTILE_X, QTILE_Y); dim3 dimGrid(ONX/OTILE_X, ONY/OTILE_Y); assert(dimBlock.x*dimBlock.v<=THREADS PER BLOCK);</pre> _____ assert(dimGrid.x<=BLOCKS_PER_GRID_&&_dimGrid.y<=BLOCKS_PER_GRID);</pre> —> thrust::device ptr<unsigned int> gsquares ptr(d gsquares); —> thrust::device ptr<REAL> sf ptr(d sf aux); ----> thrust::device ptr<REAL> sf out ptr(d sf out); thrust::device_ptr<unsigned int> qq_ptr(d_qsquares_out); —> thrust::pair<thrust::device_ptr<unsigned int>, thrust::device_ptr<REAL> > new_end; \rightarrow thrust::device ptr<unsigned int> occurence ptr(d gsquares occurence); \rightarrow for (unsigned int i=0; i<index tw+1; i++){ \rightarrow Kernel_CalculateTrajectoriesSF<<<dimGrid, dimBlock>>>(d_tracers,&d_tracerstw[i*NTRACERS], d_sf_aux, \longrightarrow LX, LY); \rightarrow //Do.a.copy.of.q^2.in.the.i*LY+j.order \rightarrow thrust::copy(qsquares_ptr,qsquares_ptr+NN,q2.begin()); \rightarrow //Sort.the.recentry.calculated.structure.factor.according.to.g2..this.will.sort.the.keys.as.well _____ thrust::sort_by_key(q2.begin(),q2.end(),sf_ptr); \rightarrow //reduce_by_key.Warning:It.DOESN'T.support.in.place.keys,.nor.values.Estimated.time.to.realize.this:12hs mew_end = thrust::reduce_by_key(q2.begin(),q2.end(),sf_ptr,qq_ptr,sf_out_ptr); \rightarrow assert(new end.first-gg ptr == ggssize); \rightarrow thrust::transform(sf out ptr.sf out ptr+qqssize, occurence ptr, sf out ptr, thrust::divides<REAL>()); → thrust::copy(sf_out_ptr,sf_out_ptr+qqssize,h_sf); for(int k=0;k<qqssize;k++) h_sf[(index_t-i*twtd)*qqssize+k] += h_sf[k];
</pre> \rightarrow }

Profiling with NVVP

😣 🖻 🗉 NVIDIA Visual Profiler										
File View Run Help										
] 🖆 📓 🖳] 🖳 🖏 🗣 🗣 🗨 🔍 🔍 I F 🔭 I 🌉 🖁	5									
€ *New Session ⊠										
	s	0.5 s	1 s	1.5 s	2 s	2.5 s	3 s	3.5 s	4 s	4.5 s
Process 7737										A
Thread 4035286848										
L Runtime API	cudaFr									
L Driver API										
Profiling Overhead										
🖃 [0] Tesla C2075										
Context 1 (CUDA)										
- 🍸 MemCpy (HtoD)										
– 🍸 MemCpy (DtoH)										
- 🍸 MemCpy (DtoD)										
Compute										
Y 22.3% Kernel_UpdateStateVariablesActivated(float co										
└ 〒 17.6% Kernel_CalculateDisplacementField(float2*, flo			\mathbf{H}				<u>, , , , , , , , , , , , , , , , , , , </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
└ 〒 11.9% Kernel UpdateTracersPositions(float const *, fl			╵╎╎┌╴╵┌╴╵							
└ 〒 11.6% Kernel EulerIntegrationStep(float*, float const									<u>'' ' ' ' ' ' ' ' ' ' '</u> ' '	
□ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			╵╢╹╶╵ ╴╵	┯┶┯┷┯	╧┽┰┶┰┶┹┯┰	╵╎╷╷╷╷╷╷╷╷	╶┼┼┼┼┼┼┼	┝┼┼┼┼┼	╷╷╷╷╷╷╷╷	
Solution ↓ 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1				<u>· · · · _ · · ·</u>			╅╧╧╧		•••••	
└ ▼ 5.6% void spRealComplex::preprocessC2C_kernelTex<										
↓ ▼ 4 5% void sp/ector0512C:kernelTex <fftdirection_t=1< p=""></fftdirection_t=1<>										
↓ ▼ 2 9% void spRadix00328*kernel1Tex <fftdirection_t=-< p=""></fftdirection_t=-<>										
↓ ▼ 1.7% void spRealComplex::postprocessC2C_kernelTex									╏╏╏╏╏	
↓ ▼ 1.5% void spleatcomplexpostplotessezekernerrex			┼╢╴┼╶┼			┽┼┼┼┼┼			╏╏╏╏╏╏╏	
↓ ▼ 1.3% void thruct:system:suda::detail::det									╏╎╏╎╎╎╎	
■ T.5 % Void thrustsystemtudadetait										
² ¹ 0.5% kernet_calculatemeansquareDisplacement(noat	(1))	\sim
🗔 Analysis 😫 🗔 Details 📮 Console 🗔 Settings										
	Results									
i Kernel Optimization Priorities t. CUDA Application Analysis										
2. Performance-Critical Kernels	Rank Des	cription	or dered by	, opennizacioi	importance bas			ieved occupaticy	. optimizatio	and higher ranked kerne
The results on the right show your application's kernels ordered by potential for performance improvement. Starting with the kernels with the highest ranking, you should select an entry from the table and then perform kernel analysis to discover additional optimization opportunities. Perform Kernel Analysis Calculate DisplacementField (float const *, bool*, bool*, bool*, float, unsigned int) Solution opportunities. Perform Kernel Analysis Calculate DisplacementField (float const *, float2 const *, float2 const *, float2 Solution opportunities. Sernel_UpdateTracersPositions(float const *, float const *, float2*, float2*, float2*, float2*, float2 Solution opportunities. Sernel_UpdateTracersPositions(float const *, float const *, float2*, float2*, float2 Solution opportunities. Solution opportunities.										
select a kernel from the table at right or from the timeline to enable kernel analysis. This analysis requires detailed profiling data so your	(1)			2011221100022)					

Performance

Froggy use

This will give you access to the 2 GPUS of one node. # More exactly, it gives you all the CPU cores that are associated to the 2 GPUS of one node. [bzizou@froggy1 ~]\$ oarsub -I --project test -1 /nodes=1/gpu=2 -t gpu [ADMISSION RULE] Set default walltime to 1800. [ADMISSION RULE] Modify resource description with type constraints [COMPUTE TYPE] Setting compute=N0 [GPUNODE] Adding gpu node restriction OAR_JOB_ID=349173 Interactive mode : waiting... Starting... Connect to OAR job 349173 via the node frogkepler3 # You can get the id of the gpus with the oarprint command on the gpuset property: [bzizou@frogkepler3 ~]\$ oarprint gpuset 1 0

- Nice nodes, nice GPUs, clear tutorials, everything runs smoothly.
- GPUs are evolving fast. Opportunity to upgrade the cluster compute power by replacing ONLY the accelerator.
- Oar GPU target can perhaps be improved.
 - Possible cross access socket-GPU when CUDA_SET_DEVICE() is used by the application.
 - Allow possibility of targeting the same GPU with many processes. timesharing=user,*
 - In general 1CPU+1GPU jobs --> we "waste" 15CPUs. A GPU process should block the full node if it wants to have exclusive access to the GPU.
- Annoying, but necessary thing: Max Wall-time = 96hs
 - Stop/Restart coding, is difficult when we compute many things on-the-fly.
 - Automatic checkpoints (BLCR like...)? Is it possible for a GPU context?