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Amorphous materials
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Hard glasses Soft glasses

Metallic/oxide 
glasses

Polymers Colloids Foams

Length scale ≤ 1 nm Length scale ≥ 0.1 μm 

Flow of amorphous media is an outstanding question in rheology and plasticity

Particles are arranged in a disordered way, like in liquids, 
but they are “jammed” like in solids



Length scales in the deformation of 
amorphous systems
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Rodney et al, MSMSE (2011)

• Microscopic scale: scale of individual objects (droplets, colloids, particles). 
Dynamics is extremely complex and numerically  highly time consuming at this scale. 

• Mesoscopic scale: scale where the elementary local “plastic” events  that constitute 
the flow of amorphous materials do occur.  

• Macroscopic scale: scale relevant to engineering problems. Phenomenological laws 
describe the flow behavior. 
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Molecular Dynamics (MD) basics
• N particles (atoms, groups of atoms, meso-particles) in a box (rigid walls, periodic boundary 

conditions) 
• All physics in energy potential (forces) 

- pair-wise interactions (LJ, Coulombic),  many-body forces (EAM, Tersoff, REBO), molecular 
forces (springs, torsions)… 

• Integrate Newton’s equation of motion 
• Velocity-Verlet formulation: 

- update V by1/2 step (using F) 
- update X (using V) 
- build neighbor lists (occasionally) 
- compute F (using X) 
- apply constraints & boundary conditions 
- update V by1/2 step (using new F) 
- output and diagnostics 

• CPU time break-down: 
- inter-particle forces = 80%!
- neighbor lists = 15% 
- everything else = 5% 

• Properties via time-averaging ensemble configurations
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What is LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator!
http://lammps.sandia.gov 
• Classical MD code 
• Open source (GPL), highly portable C++ 
• Simulations at varying length and time scales:  
 electrons  ⇒ atomistic ⇒ corse-grained ⇒ continuum 

• Spatial-decomposition of simulation domain for parallelism 
• GPU and OpenMP enhanced 
• Can be coupled to other scales: QM, kMC, FE…
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Benchmark: atomic fluid 
• 32000 atoms for 1000 time-steps 
• reduced density 0.8442 (liquid) 
• force cutoff 2.5 sigma (∼2.5 diameters) 
• neighbor skin 0.3 sigma (neighbor atom 55) 
• NVE time integration



GPU acceleration in LAMMPS
USER-CUDA package!
• GPU version of pair styles, fixes  and computes  
• an entire LAMMPS calculation run entirely on the GPU for many time 

steps 
• only one core per GPU 
• better speed-up if the number of atom per GPU is large
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GLASSDEF project
Microscopic aspects: 
• Parallel Replica Dynamics in glasses: a method to extend 

timescales accessible to Molecular Dynamics simulation (FP, D. 
Rodney and J.-L. Barrat) 

• Plasticity in 2D sheared amorphous solids: investigation of the 
spatio temporal correlations of plastic activity in athermal amorphous 
solids  (FP, A. Nicolas, J. Rottler and J.-L. Barrat) 

• Microscopic test of a mean field model for the flow of amorphous 
systems (FP, J. Olivier, K. Martens and J.-L. Barrat) 

• Avalanches in amorphous systems: scaling description of 
avalanches in the shear flow of athermal amorphous solids at finite 
shear rates (FP, E. Ferrero, C. Liu, L. Marradi, K. Martens, A. Nicolas 
and J.-L. Barrat)
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Elementary plastic events
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At low temperature, the onset of plastic deformation in glasses is due to the 
accumulation of elementary plastic events, consisting of localized in space and 
time atomic rearrangements involving only a few tens of atoms, the so-called 
Shear Transformations (STs)

Tanguy et al., EPJE (2006)

Open question: 
How do the elastic response to a ST build in time?



Fictitious STs in amorphous solids
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F. Puosi, J. Rottler and J.-L. Barrat, PRE (2014)

2D binary mixture of athermal Lennard-
Jones particles. 
‣ We apply an instantaneous local 

shear transformation and we observe 
the response of the system 

Disorder average of the response: 
average over different spatial 
realizations of the ST. 
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Comparison with Continuum Elasticity Theory
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F. Puosi, J. Rottler and J.-L. Barrat, PRE (2014)
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Simulations TheoryEquilibrium response: 
Eshelby inclusion problem

Transient regime:  
solution of a diffusion equation for 
t he d i sp lacemen t fie ld i n an 
homogeneous med ium in the 
presence of a perturbation due to a 
set of two force dipoles in the origin.



  

... a “mesoscopic” approximation

Plastic activation  

A 2D scalar field for the “local” stress

Elastic recovery

+ (eventually) independent tracers moving according to 
the resulting deformation fields.

Case of thermally activated events

“local” in fourier space

plastic strain change:

propagator



  

Workflow (physical protocol)
InitializeEverything();

for (i=0; i<t_max; i++){
UpdateStateVariablesActivated();
ComputePlasticStrainChange();
TransformToFourierSpace();
Convolution();
#ifdef TRACERS

CalculateDisplacementField();
#endif
AntitransformFromFourierSpace();
EulerIntegrationStep();
#ifdef TRACERS

UpdateTracersPositions();
#endif
if (condition(i)){
DoSomeMeasurementsAndAccumulate();
}

}

PrintResults();

CUDA_Kernels , cudaMemSet

CUDA_Kernel
CUDA_Kernel or Thrust call
cuFFT

CUDA_Kernel

CUDA_Kernel or Thrust call

CUDA_Kernel

CUDA_Kernel

Thrust calls + C host code

C host code

cuFFT



  

CUDA basic kernel example

Kernel Call

Euler integration step
pre-computed in Fourier space



  

cuFFT library call

Plan declaration

Plan usage



  

CUDA kernel RNG use

Philox: A counter-based RNG from the “Random 123 library” (2011)

Fast, easy to parallelize, use minimal memory/cache resources (ideal for GPU), require very little code.
Have passed all of the rigorous SmallCrush, Crush and BigCrush tests in the extensive TestU01 suite.



  

Thrust Library basic usage

● High-Level Parallel Algorithms Library
● Parallel Analog of the C++ Standard Template Library (STL)
● Portability and Interoperability (CUDA, TBB, OpenMP,...) 

(REAL is either float or double)



  

Thrust Library “advanced” usage



  

Profiling with NVVP



  

Performance

- cuda 6.0 vs cuda 5.0 ?
- ECC enabled/disabled ?
- very low occupancy in both cases ?

Unexpected similarity between Fermi 
and Kepler GPUs

Speedups
~ 50x

A lot more to 
exploit, starting 
with CPU-GPU 
concurrency 

( CPU code not 
optimal )



  

Froggy use

● Nice nodes, nice GPUs, clear tutorials, everything runs smoothly.

● GPUs are evolving fast. Opportunity to upgrade the cluster compute power by replacing ONLY the 
accelerator.

● Oar GPU target can perhaps be improved.
- Possible cross access socket-GPU when CUDA_SET_DEVICE() is used by the application.
- Allow possibility of targeting the same GPU with many processes. timesharing=user,*  
- In general 1CPU+1GPU jobs --> we “waste” 15CPUs. A GPU process should block the full node if it 
wants to have exclusive access to the GPU.

● Annoying, but necessary thing: Max Wall-time = 96hs
- Stop/Restart coding, is difficult when we compute many things on-the-fly.
- Automatic checkpoints (BLCR like...)? Is it possible for a GPU context?
 


