High resolution seismic imaging

Romain Brossier¹, Vincent Etienne^{2,5}, Guanghui Hu^{1,2,6}, Ludovic Métivier³, Stéphane Operto², Benjamin Pajot¹, Vincent Prieux^{2,4}, Jean Virieux¹ and people from the SEISCOPE team^{1,2} romain.brossier@ujf-grenoble.fr

¹ ISTerre, Univ. Joseph Fourier Grenoble & CNRS
² Géoazur, Univ. Nice Sophia Antipolis & CNRS
³ LJK, Univ. Joseph Fourier Grenoble & CNRS
⁴ now at CGG, Massy
⁵ now at Saudi Aramco, Daran, Saudi Arabia
⁶ now at SINOPEC Geophysical Research Center, Nanjing, China

03/07/2013 CP CIRA, Grenoble

3 Example on the Valhall Oil & Gas field

Perspectives and challenges on the HPC side

(日) (四) (王) (王) (王)

990

3

Algorith

Perspectives and challenges on the HPC side

990

3

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Multi-scale challenges of geophysical imaging

High resolution seismic imaging

03/07/2013 CP CIRA, Grenoble 4 / 25

Seismic imaging of the Earth

• Imaging/tomography : reconstruction of Earth subsurface properties from indirect measurements of seismic waves

$$\frac{\partial U}{\partial t} + \Lambda \frac{\partial U}{\partial x_i} = F_0 \tag{1}$$

3

Seismic imaging of the Earth

• Imaging/tomography : reconstruction of Earth subsurface properties from indirect measurements of seismic waves

Difficulties for Oil & Gas industry

- "Easy" reservoirs are already discovered
 - Improvement of the acquisition : number of channels and frequency band (Moore law)
 - Improvement of the imaging algorithms to handle complex geology (and high number of channels...)

Э

990

DQC

Э

DQC

Э

R. Brossier et al. (Univ. Joseph Fourier Grenoble)

DQC

Э

R. Brossier et al. (Univ. Joseph Fourier Grenoble)

DQC

3

DQC

3

Full waveform inversion : workflow

FWI is a difficult problem that requires expertise in many fields

- Physics and Geophysics : understanding of physics of seismic waves
- Applied Mathematics : PDE, optimization and inverse problem
- Signal Processing
- HPC : efficient implementation of numerical method of modern HPC platforms and managing of large data volumes

< ロト < 同ト < ヨト < ヨト

2 Algorithm

- Frequency-domain PDE solver
- Time-domain PDE solver

Example on the Valhall Oil & Gas field

Perspectives and challenges on the HPC side

< 由)< 문)< 문)< 문)< 문)< 문)< 문)

2 Algorithm

• Frequency-domain PDE solver

Time-domain PDE solver

Example on the Valhall Oil & Gas field

Perspectives and challenges on the HPC side

< 由)< 문)< 문)< 문)< 문)< 문)< 문)

990

Frequency-domain PDE solver

• Helmholtz equation for discretized with optimal finite-difference

$$\frac{\omega^2}{\kappa(\mathbf{x})}p(\mathbf{x},\omega) + \frac{\partial}{\partial x}b(\mathbf{x})\frac{\partial p(\mathbf{x},\omega)}{\partial x} + \frac{\partial}{\partial y}b(\mathbf{x})\frac{\partial p(\mathbf{x},\omega)}{\partial y} + \frac{\partial}{\partial z}b(\mathbf{x})\frac{\partial p(\mathbf{x},\omega)}{\partial z} = s(\mathbf{x},\omega)$$
(2)

• Leads to large sparse linear systems Ax = b with many $(10^2 - 10^4)$ RHS \rightarrow requires plateforms with lots of core-memory

F (Hz)	h(m)	$n_u (10^6)$	M_{LU} (Gb)	$T_{LU}(s)$	$T_{s}(s)$	N _p
7	75	6.2	260	1822	0.97	64 (32*2)

2 Algorithm

- Frequency-domain PDE solver
- Time-domain PDE solver

Example on the Valhall Oil & Gas field

Perspectives and challenges on the HPC side

< 由)< 문)< 문)< 문)< 문)< 문)< 문)

990

Time-domain PDE solver

Wave equation visco-acoustic media discretized with finite-difference

$$\frac{1}{\kappa(\mathbf{x})}\frac{\partial^2 \rho(\mathbf{x},t)}{\partial t^2} + \frac{\partial}{\partial x}b(\mathbf{x})\frac{\partial \rho(\mathbf{x},t)}{\partial x} + \frac{\partial}{\partial y}b(\mathbf{x})\frac{\partial \rho(\mathbf{x},t)}{\partial y} + \frac{\partial}{\partial z}b(\mathbf{x})\frac{\partial \rho(\mathbf{x},t)}{\partial z} = s(\mathbf{x},t)$$
(3)

■ Explicit time-marching algorithms with high scalability
→ number of cores is the crutial point

weak and strong scaling done on the Freeride slot on Froggy

- strong scaling : grid $512 \times 1024 \times 1024$
- weak scaling : 512 × 1024 × 1024 points on 16 cores to 2048 × 4096 × 4096 points on 2048 cores

Time-domain PDE solver

How to optimally distribute sources and computational mesh over MPI processes ? 2 levels of parallelism

Introduction

Perspectives and challenges on the HPC side

990

Ξ

< ロ ト < 団 ト < 三 ト < 三 ト</p>

The Valhall field environment and data

- Valhall field : off-shore shallow-water in the North Sea. Over-pressured, under-saturated, Upper Cretaceous chalk reservoir (exploited since 1982)
- Shale at shallow depth : strong inprint of anisotropy in the seismic data
- \circ 3D seismic : pprox 50000 shots, 2414 permanent 4C sensors on the sea bed (OBC)

from Prieux et al, 2011, GJI

< 口 > < 同 >

from Prieux et al, 2011, GJI

 \rightarrow Jade/CINES, 52 h, 32 procs, 55 Gb of RAM

2D Elastic anisotropic inversion

from Prieux et al, 2013, GJI

< 市

2D Elastic anisotropic inversion

from Prieux et al, 2013, GJI

03/07/2013 CP CIRA, Grenoble 19 / 25

3D Acoustic inversion

Starting model from reflection tomography

-

< □ > < 同 >

3D Acoustic inversion

FWI : [3.5,4] Hz

990

Э

< ロト < 回ト < 三ト < 三ト</p>

3D Acoustic inversion

FWI : [4,5] Hz

990

3

< ロト < 回ト < 三ト < 三ト</p>

3D Acoustic inversion : Performances

Code	TOY3DAC	GeoInv3D
archi.	Gofree Intel cluster	IBM Blue Gene
nb cores	72	2048
time/it. (h)	1.33	2.30
tot. time/it. (h)	96	4710
theo. pic flop/it	3.1E15	5.8E16
tot memory	pprox 500Gb	pprox 500Gb

- Gofree Intel Cluster
 - Intel Westmere nodes
 - 2 proc. × 6 cores per node 2.26 Ghz
 - ► 72 Gb of memory per node
 - Mellanox QDR 40 Gb/s Infiniband network

- IBM Blue Gene P (IDRIS) center
 - Power PC 450 nodes
 - 1 proc. × 4 cores per node 850 MHz
 - 2 Gb of memory per node

Algorithr

Example on the Valhall Oil & Gas field

Perspectives and challenges on the HPC side

990

3

< ロ ト < 団 ト < 三 ト < 三 ト</p>

- Speed up : data "compression" and local optimization performances
- code efficiency : third parallelism level based on shared memory threads (OpenMP)
- Improve our physics : more complex PDE, but more expensive
- Tackle bigger problems
 - larger size targets : $\approx 50 \times 50 \times 10$ km
 - higher frequencies : \approx 15-20 Hz
 - denser acquisition : $\approx 10^5$ channels $\times \ 10^4$ sources